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Oscillator-Like Hamiltonians and Squeezing

J. Beckers,® N. Debergh,*? and F. H. Szafraniec®

Received January 5, 2000

Generalizing arecent proposal leading to one-parameter families of Hamiltonians
and to new sets of sgueezed states, we construct larger classes of physicaly
admissible Hamiltonians permitting new developments in sgueezing. We also
discuss coherence.

1. INTRODUCTION

We have recently proposed new sets of Fock states [1] which can be
exploited in the contexts of coherence [2] and squeezing [3-5]. Due to the
inclusion of a(real, continuous) parameter \ (in the bosonic creation Heisen-
berg operator), the corresponding oscillator-like*“ Hamiltonians’ led to station-
ary Schrodinger problems characterized by \-independent eigenvalues, but
\-dependent eigenfunctions, the latter being particularly interesting [1] for
the study of new squeezed states [3]. Moreover, this approach wasin acertain
sense a kind of deformation of the current one, but following Wigner’s point
of view [6].

Let usinsist strongly on thefact that wewere considering [1] “ squeezing”
through the \-dependent eigenfunctions of our Schrodinger problems and,
evidently, through the associated mean values of position and momentum,
their variances, and (in)equalites coming from the Heisenberg relations. This
differs from Yuen's approach [ 3], which is based on the study of “squeezing”
through the famous two-photon coherent states of the radiation field asking
for eigenstates of the oscillator operators and not of the Hamiltonian.
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Here we want to generalize such developments by including a priori
more than one parameter when, simultaneously, we study new creation and
annihilation operators aswell asthe corresponding oscillator-like “ Hamiltoni-
ans’ appearing as physically admissible or nonadmissible ones.

The contents are then distributed as follows. In Section 2, we recall a
few relations from our first approach [1]. Section 3 is devoted to its already
suggested generalization. In Section 4, we apply these considerations to the
sgqueezing problem and find improvements with respect to the previous one-
parameter results. Finally some conclusions and comments are included in
Section 5.

2. A SHORT SURVEY OF OUR RECENT PROPOSAL
Let us define the new (bosonic) creation Heisenberg operator by
al=a"+ N, MXeR @)

where \ refers to a rea, continuous parameter and a' is the Hermitian
conjugate of the annihilation operator a satisfying the expected Heisenberg
commutation relations, i.e.,

[aal =1, [aa=]Ial,a]=0 )

These quantum harmonic oscillator-like considerations lead to an analog of
a (non-Hermitian) Hamiltonian of the type

Hy =Ha afy ~Ha a} + \a=Huyo +\a (3
where the harmonic oscillator Hamiltonian is obviously given by
1d?2 1
Hho = — 3 3 + 5 X, Hlio. = Huo. (4)
Moreover, they ensure that
[H)\v a] = _av [H)U a}t] = a)t (5)

so that the (generalized) Wigner approach [6] to quantum mechanics is still
working. The energy eigenvalues and eigenfunctions have been determined as

Ew=n+1 (=012..) (6)

and

2~ an,n.f 14

2 A
Nt e M (Y v

where, as usual, we have chosen units such that ® = 1, h = 1 and where
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H,, and L refer to Hermite and generalized L aguerre polynomials[7], respec-
tively. Let us insist on the unchanged spectrum (6) with respect to well-
known oscillator results, but now with A-modified eigenfunctions. Moreover,
we have shown [1] that these new eigenfunctions (7) correspond to specific
squeezed states [3, 4]. Let us recall that squeezed states have already been
experimentally detected [5] as “two-photon coherent states’ for the electro-
magnetic field. Our new states lead to the characteristic inequality for squeez-
ing given by

1 LO(=N) (LAY 1
2 — - 2 - 7 2N 7 =
A =2n+ 35— @+ D) T ~ 2oy <2 ©

n=123 ... and Ne R\][-r,+r[, r-0 if no o (9

3. A SIMPLE WAY TO GET GENERALIZED DEVELOPMENTS

The qualities and defects of our above approach [1] suggest thefollowing
new approach to the problem: to search for (bosonic) oscillator-like annihila-
tion (b) and creation (b*) operators ensuring the conditions

[b, b"] = 1, [H, b] = —b, [H, b"] = b* (10)
and

H=1{b b+}=oc£+[3(x)£+ x) (11
27 dx? ax Y

where b and b* have to be general expressions of the usual operators a and
a'. Let us note that we have introduced different notations for the usual
Hermitian conjugate operator a' of a and the so-called b* associated to b
with a general meaning discussed in the following.

Such a set of conditions obviously contains the Heisenberg and Wigner
requirements through Egs. (10) and, moreover, restricts the Hamiltonian to
Schrodinger-like ones through Eqg. (11), where o is area constant and 3, -y
are arbitrary real functions of the space variable.

According to such a program, let us introduce the generalized operators
b and b* in terms of a and a' by the definitions

b=1+cla+ ca + c (12)
and

b* =ca+ (1 + coa' + ¢ (13)
where ¢, C,, ..., Cg are arbitrary (rea) parameters and where the current
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harmonic oscillator context has been included by equating all the parameters
to zero, while the definition (1) is also incorporated by equating only ¢g with
the N parameter, all the other ¢’'s being identically zero.

At this stage let us point out that the generalized operators (12) and
(13) are intimately connected with the construction of the so-called “two-
photon coherent states” due to Yuen [3], but here from inhomogeneous linear
canonical transformations which could be summarized by the following form:

o) = (a® s d)

where the matrix has to be invertible so that, for example,
l+c)(@+c)—ce=1
This leads to
CiL+C+CC—CC =0 (14

which is the constraint between the c's following from (10) and leaving, in
fact, only five independent parameters in the whole discussion.

By taking care of the definitions (12) and (13) in the Hamiltonian (11)
and by remembering that

1/(d 1

aZﬁ(d_erx)’ aTZTZ(—d—)(er) (15)

we find the possible Hamiltonians in the form
_ a9 d >
H—Adx2+(Bx+C)dX+Dx + Ex+ F (16)

transferring the parametrization on the six parameters A, B, . . ., F given by
A= _% — CCy + %C4 (1 + C]_) + %Cz(l + C5)
B=rcy1+c) —cx(1+ cs)

1
C=—F%2[cs(c; —Cc,+1) +c3Cs—C— 1
ﬁ[ce(l C2 ) 3(Ca 5 )]
D=%+Czc4+%C4(1+Cl)+%Cz(1+C5)
1
E=— ci+C+1)+cy(c,+cs+ 1 17
\/é[cﬁ(l 2 ) 3(Ca 5 )] (17)

F=3C1 + c) — 361 + Cs) + CCs
These developments compared to the previous ones [1] clearly appear as a
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generalization which permits an interesting discussion at the level of physi-
cally admissible Hamiltonians as well as at the level of coherence and (or)
sgueezing, once we have solved the eigenvalue and eigenfunction problems
associated with such Hamiltonians.

In terms of the new parameters, let us point out again that the current
harmonic oscillator Hamiltonian (4) corresponds to

A= -D=-12, B=C=E=F=0 (18)
while our previous deformation (1) leading to the Hamiltonian (3) is given by
A=-D=-12, B=F=0, C=E=\.2 (19)

With the Hamiltonian (16) and the relations (17), the stationary Schrod-
inger problem can now be solved by conventional quantum mechanical meth-
ods [8]. It leads to the general answer

B C2 A B?
=F-——-——-S@n+1)+@D—-—
E.=F > " A p2(2n 1) q(D 4A)
BC
+ _
q(E 2A> (20)
while the corresponding eigenfunctions take the form
— ool —B - C
e I S il P G Sl (21)
Tl
where p and q enter the necessary change of variable
x=py+q (p#0 (22)
Let us mention the two constraints
o B\ _
A (D A 1 (23)
and
B? BC
2q<D—ﬂ\>+E—£—O (29)

following from these calculations. Together with Egs. (17), these relations
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(23) and (24) fix the parameters p and q of our change of variable (22) to
the unique values

p? = —2A, q= 2EA — BC (25)

in order to get in particular a positive spectrum. By requiring that we deal
with sguare-integrable eigenfunctions, we finaly ask for

A<0 and B<1 (26)

compatible with the specific cases (18) and (19). We thus get (up to a
normalization factor N,) the solutions (21) as given by

— _ 2
Un(X) = N, exp( 4AB x2>exp[(—(8 2Al) c_ E)x}exp[—(ZEALlABC) ]

1
H,|—— (x — 2EA + BC 27
( el )) (27)
Moreover, we obtain the remarkable result of an unchanged real spectrum
E.=n+4, n=0,12,... (28)

in this general context as was aready the case in our first study [see (6)].
Let us here insist on this real character without having required the self-
adjointness of the Hamiltonian (16), a similar property to the one which has
recently been quoted by Bender and Boettcher [9], although we have not
required any specific discrete symmetries. Nevertheless, we have al so noticed
that a necessary and sufficient condition ensuring that H™ = H is simply

B=C=0 (29)

leading to a large class of physically admissible Hamiltonians.

As a last remark in this section, let us point out that eigenfunctions
Pin(X) like (27) are once again associated with Fock states—Iet us call them
In)e, referring to the c-parametrization included in Egs. (12) and (13)—and
it is interesting to quote the action of b and b on such states. We obtain

bln), = (L+c —c)n— 1 (30)

J- an

and

b*n)e = (1 +cs— ch)ln+ 1) (31)

2\/ —A Ny

and point out that
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bb*[n)e = (n + D[n)e,  b*bln); = njn) (32)

so that the conditions (10) and (11) are obviously satisfied, ensuring in
particular that

{b, b}n)e = 2H|n)e = (2n + D)) (33)

4. ON IMPLICATIONS IN SQUEEZING

First, we extract new information by considering the lowest energy
eigenvalue E, of the spectrum and its associated eigenfunction iso(X). Then,
we come back very briefly to known cases corresponding to the Hamiltonian
(16) with the conditions (18) or (19). Finaly, we consider new parametriza-
tions exploiting the results obtained in Section 3 mainly with a view to
interesting improvements in squeezing.

4.1. From the Lowest Eigenvalue of the Spectrum

Due to the fundamental and specific role played by the lowest energy
eigenvalue E, let us study coherence and squeezing through the eigenfunction
Po(X) = (27), which takes the explicit form

14 _ 2
ool dor o) v (3 {5

(34
in order to ensure that

j T dx = 1 (35)

where, for brevity, we have introduced the notations
_B-1 _g_B-1C _ 1 _ Bey?
==, B=E oA Y op (2EA — BC)
(36)

In such an n = 0 context, the mean values and consequences are readily
obtained as follows:

2
_2EA+C A 2EA
<X>o——1_ : %o B—l+< C)

B B-1
(Po=0,  (Ph=" (@)

so that we get
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A B-1

(AX)5 = B_1' (Ap)é = T (38)
These results ensure coherence due to the Heisenberg relation
(AX)o(Ap)o = 1/2 (39)
and sgueezing on the x variable
(AX)5 < 1/2 iff B<2A+1 (40)
or on the p variable
(Ap)3 < 1/2 iff B>2A+1 (41)

Such inequalities on A and B only will suggest our future parametrizations
in Sections 4.2 and 4.3. In fact, let us immediately note that we plan to
privilege the discussion on the x variable, so that Eq. (40) will play the
main role.

4.2. From Known Cases. ..

(i) The harmonic oscillator context characterized by the condition (18)
is well known as far as coherence and squeezing are concerned [2-5]. As
already mentioned, this case is contained in our study, but we learn only that
it corresponds to al ¢'s equal to zero in Egs. (12) and (13), it generates a
self-adjoint Hamiltonian (4), and deals with Hermitian conjugated operators
b = aand b" = a' satisfying the condition

(Oh' = b (42)

(i) The deformed context characterized by the condition (19) has already
been discussed in ref. 1. it breaks down the condition (42) and the self-
adjointness of the Hamiltonian (3), so that physical connections are here
questionable, although they correspond to real spectraand to new possibilities
of squeezing for n # 0 [1]. Let us point out that the conditions (29) are
obviously in contradiction with Egs. (19) and that, for n = 0, the inequalities
(40) cannot be satisfied.

4.3. ...to New Contexts

By keeping the conditions (29) in order to maintain the self-adjointness
of the Hamiltonians, we can also require the condition (42). The latter leads
to very simple demands of the type

Ct=0C, C=2C4 C3=¢Cs (43)

so that we then get families of physically admissible Hamiltonians which
can be further exploited.
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(i) Within such conditions, let us go to a one-parameter A-deformation
with, for example, the values

C, = C; = 2/3, C, = C, = 4/3, C3=Cs =N\ (44)

Such a case corresponds to the parametrization (17) given by
A=-118 C=92  E=3/2\ F=X\ B=C=0
(45)

and the eigenvalue and eigenfunction problem can be completely solved. We
get the spectrum (28), and the eigenfunctions (27) take the final form

() = N, exp(—g X2 — % AX — )\Z)Hn(Bx + J2)) (46)
where the normalization factor is in the form
N, = \/§T7U427n/2 7
Jn
Mean values and Heisenberg constraints can then be evaluated and we get
Xy = —%_2 N 0O (2}3 T %) (48)
and
(Ph=0,  (Ph=90+3) (49)
so that
@Axf =5 +3), @Apk=9Mn+3) (50)
leading to
(AX)\(Ap), =n + 2 (52)

This result is analogous to that of the undeformed case, but here it permits
squeezing (but on x only) due to the relations (40) and (50). In fact, such a
squeezing can only take place forn = 0, 1, 2, 3.

(ii) A final improvement of this example consistsin the possibleincrease
of such n values permitting the squeezing and maintaining the nice property
(42) and the self-adjointness of H. This can be realized through the new \-
deformation (A > 0) characterized by the values

A — 1)° A—1
01:C5:(\/;T), C2:C4:ﬁ, C3

leading to the relations (17) given now in the form

—c=0 (52
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1 A
A= o D_E’ B=C=E=F=0 (53)
satisfying once again the inequalities (40) when n = 0.
Here the eigenfunctions are found as

_ _é ) B )\1/4 ,n.fl/4zn/2
k) = N exp( 5 X )Hn(ﬁx), A TR
and we get in correspondence with Egs. (50)
1 1 1
(AX)% = X (n + §>, (Ap)f = )\(n + 5) (55)

We thus notice once more the validity of Eq. (51) ensuring coherence for
the particular value n = 0 only, but squeezing (in the x coordinate) for all
the values n satisfying the following inequality:

A>2n+1>0 (56)

A further interesting property of the above eigenfunctions (54) [and evidently
(46)] is that, due to the characteristics of Hermite polynomias [7], these
solutions are not only normalized, but are also orthogonal, as can be eas-
ily established.

If physical applications require a fixed finite set of levelsin the energy
spectrum, we can always choose, due to the inequality (56), our \ parameter
in order to guarantee the squeezing up to this n value.

(iii) As a last context, let us relax the condition (42) and the self-
adjointness of the Hamiltonian. This corresponds to an extension of the
context discussed inref. 1 and recalled here in Section 4.2(ii). We can choose,
for example,

b=a-+ \a, b*=a' (57)
corresponding to al the null parameters c except ¢, = A or to
A=3(\ - 1), B=—\, C=E=0,
D=ix+1, F=-}

ensuring squeezing on X in then = 0 caseif 1 > A > 0. With the spectrum
(28), the associated eigenfunctions here take the form

00 = Nooxp| -3 (i * sz]Hn( ﬁ) (59)

(58)

They are normalizable with
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N =T (1 h A) (1 + NPF, 2200 (60)

but not orthogonal. Depending on the even or odd character of n, the functions
F.(\) are respectively given by
n2 22y n—2l
WO S @z e S “
or
(n—1)/2 221+1)\ n—1-2

Pl = 2 @ + DI((n — 1)/2 — )12

(nodd). (62

These functions enter the evaluation of mean values and Heisenberg con-
straints for each n value. Specific values are of interest in order to learn the
general behavior of the corresponding mean values and their consequences,
but these are only exercises. Let us just point out that, for n = 0, we get

X = 0, wx=lG A) (A%

2l1+
1/1+ A\
(P =0, <&»—5@ ) (Ap); (63)
giving us coherence due to
(AXR(Ap)R = V4, O\ (64)

while sgueezing requires parametrizations according to
1>\A>0 or —1<A<O (65)

in the x or p context, respectively. Coherence is then lost if n # 0O, but
sgueezing can be installed when specific refined inequalities of the type (65)
are valid. The upper and lower bounds on these \ values can be determined
by entering the results (59)—(62) depending on the n valuesweare considering.

5. SOME FURTHER CONCLUSIONS AND COMMENTS

Among the aboveresults, let uspoint out those obtained moreparticularly
in the Section 4.3(ii) leading to an attracting class of one-parameter self-
adjoint Hamiltonians

H, = 3{b,, b} (66)
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with

by, = (1 + M)a PATla b= w, W)=hb, (67)

2\ 2/\

characterized by a deformation parameter X > 0 and corresponding to the
current harmonic oscillator case when A = 1. Appearing nearly as a trivia
result, this family opens possible new studies of squeezing through energy
eigenfunctions (54) which are not only normalizable, but also orthogonal
among themselves. The possible choice A > 2n + 1 with a fixed set of
energy eigenvalues given by the usual spectrum (28) may offer an interesting
connection to possible experimental realizations for oscillator-like systems
in order to test and to realize the associated squeezed states.

One further comment is the possible exploitation of our generalized
operators b and b* by studying more than one (real) parameter in the defini-
tions (12) and (13) as noticed elsewhere [11].

Another point isthat the motivations of deforming our (annihilation and
creation) oscillator-like operators [as realized in Egs. (12) and (13)] were
intimately connected with a specific mathematical property called “subnor-
mality of operators’ [10], a property already exploited in our previous
work [1].

As a final comment, let us aso recal that our developments could
evidently be extended to the fermionic sector as already specified in our first
approach [1]. The generalizations (12) and (13) can be realized on fermionic
annihilation and creation operators and their conseguences can then be
deduced. Then the superposition of these bosonic and fermionic contexts
could be considered in order to go toward supersymmetric developments[12]
by including simultaneously specific physical as well as mathematical
properties.
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